Multi-Domain Neural Machine Translation with Word-Level Domain Context Discrimination

Jiali Zeng Jinsong Su Huating Wen Yang Liu Jun Xie Yongjing Yin Jianqiang Zhao

Reporter : Xiachong Feng

Author

Jiali Zeng 厦门大学数字媒体计算研究中心 曾嘉莉 2017级硕士研究生

Jinsong Su 厦门大学数字媒体计算研究中心 苏劲松 副教授、硕士生导师

Challenge

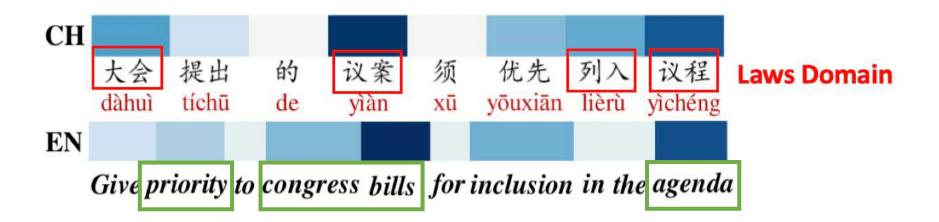
- Training a NMT model for a specific domain requires a large quantity of parallel sentences in such domain, which is often not readily available.
- The translated sentences often **belong to multiple domains**, thus requiring a NMT model general to different domains.

Previous

• Using mixed-domain parallel sentences to construct a unified model that allows translation to switch between different domains.

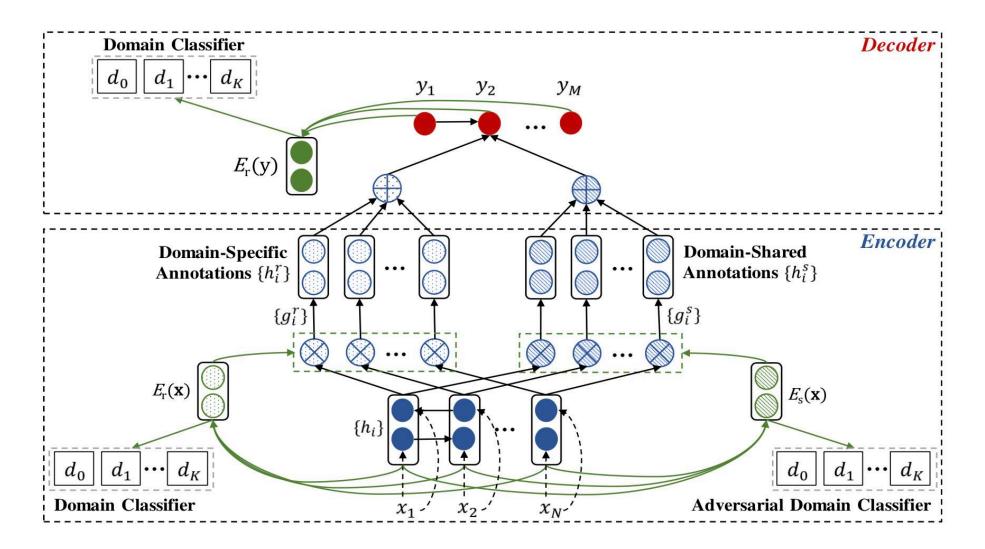
Motivation

- 1. Since the <u>textual styles</u>, <u>sentence structures and terminologies</u> in different domains are often remarkably distinctive, whether such domain-specific translation knowledge is effectively preserved could have a direct effect on the performance of the NMT model.
- 2. Words in a sentence are related to its domain

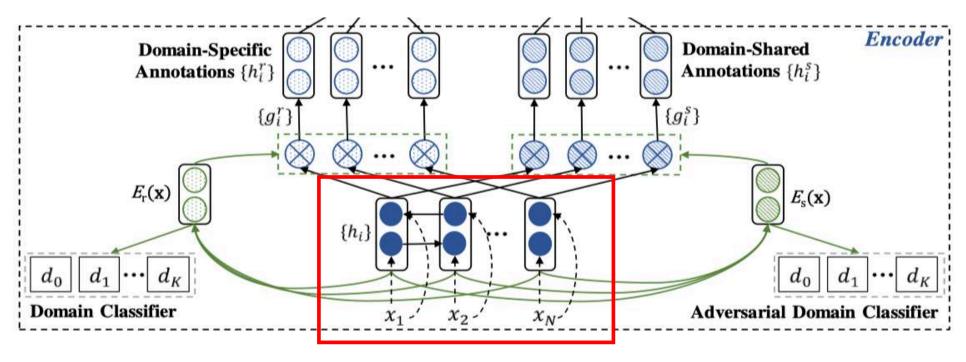


- 3. It is also reasonable for our model to pay more attention to these domain-related words than the others during model training.
- Context = domain-specific + domain-shared

Model

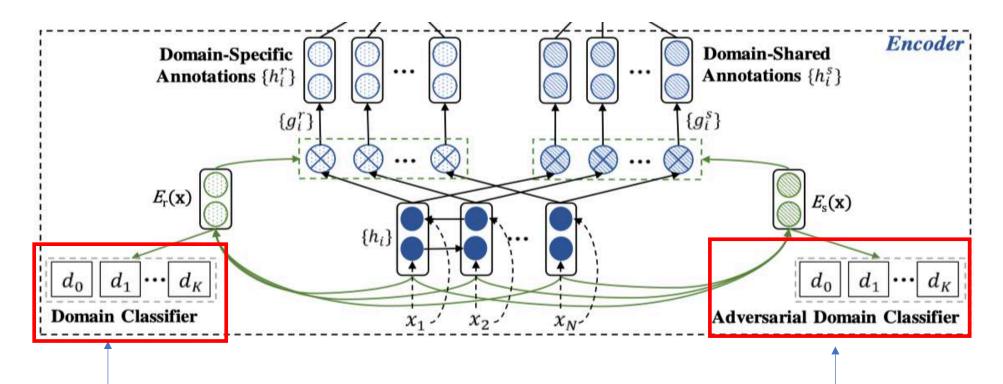


Encoder



Bidirectional GRU

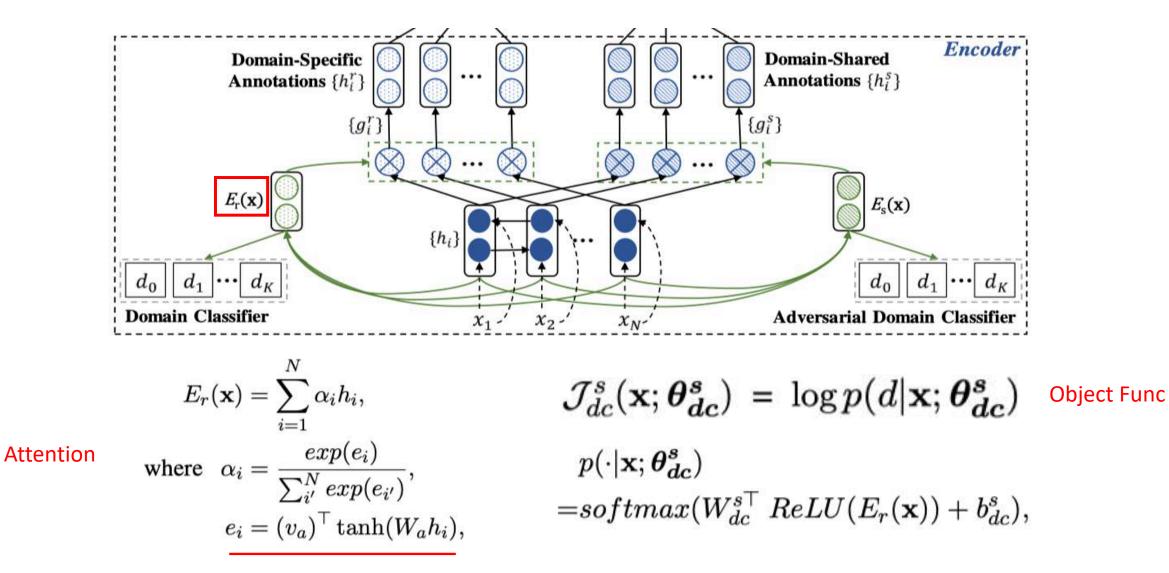
Encoder



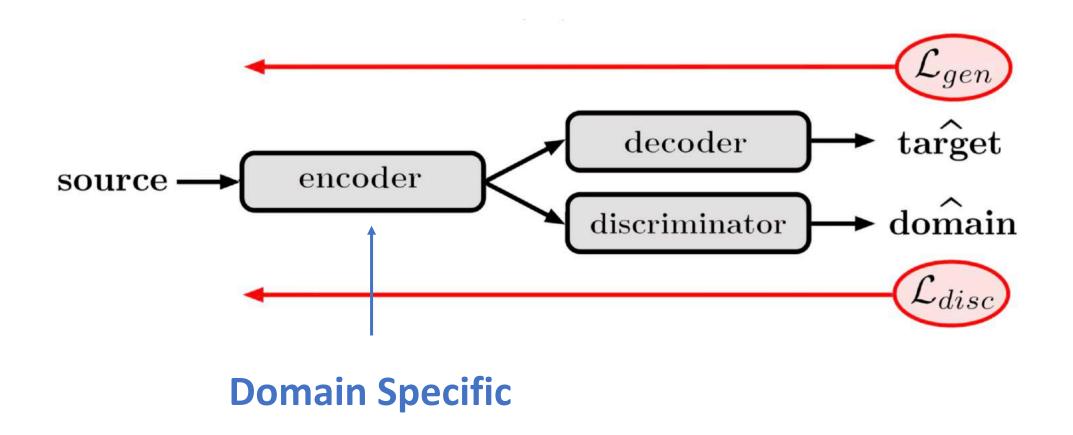
Domain classifier that aims to distinguish different domains in order to generate domainspecific source-side contexts.

Adversarial domain classifier capturing source-side domain shared contexts.

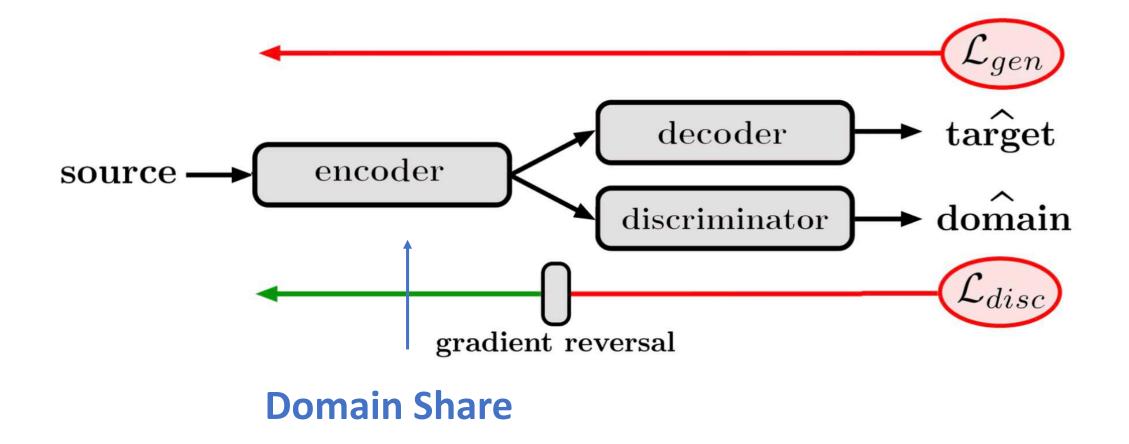
Domain Classifier



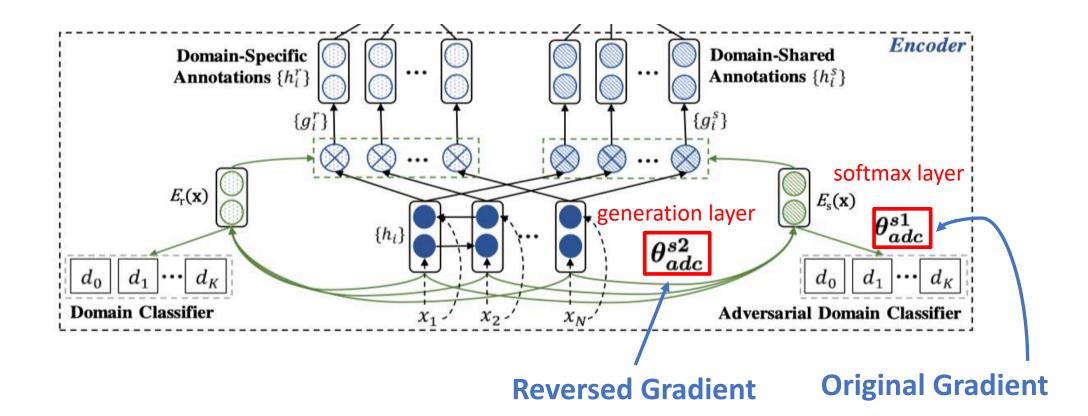
Effective Domain Mixing for Neural Machine Translation *WMT17*



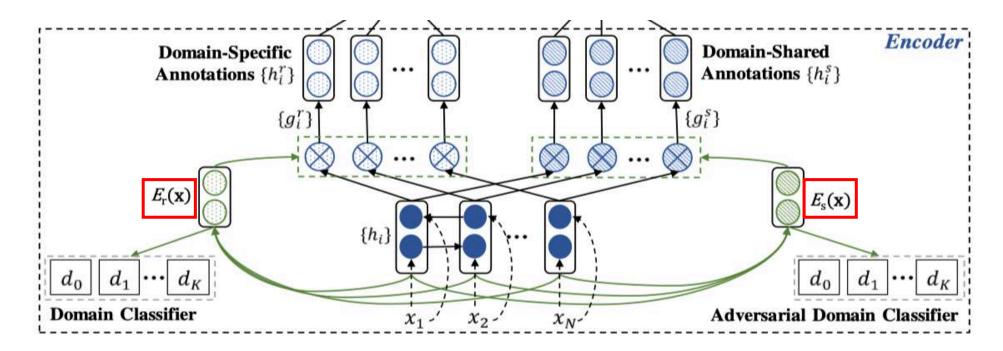
Effective Domain Mixing for Neural Machine Translation WMT17



Adversarial Domain Classifier



Encoder



$$egin{aligned} g_i^r &= sigmoid(W_{gr}^{(1)}E_r(\mathbf{x})+W_{gr}^{(2)}h_i+b_{gr}) & h_i^r &= g_i^r \odot h_i, \ g_i^s &= sigmoid(W_{gs}^{(1)}E_s(\mathbf{x})+W_{gs}^{(2)}h_i+b_{gs}) & h_i^s &= g_i^s \odot h_i. \end{aligned}$$

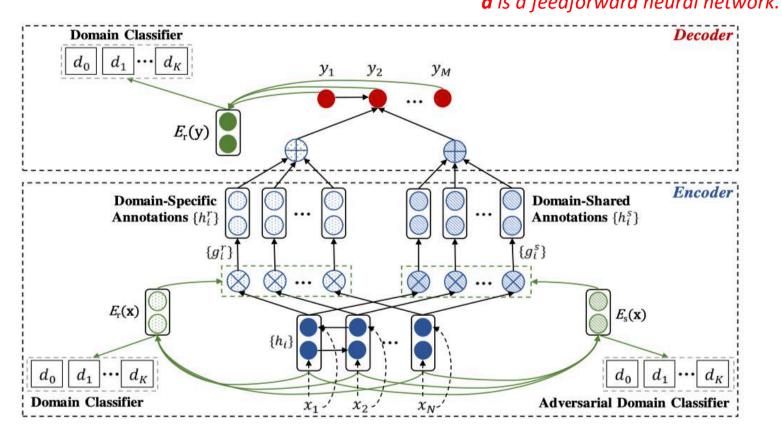
Decoder

$$s_j = GRU(s_{j-1}, y_{j-1}, c_j^r, c_j^s).$$

GRU Hidden

$$c_j^r = \sum_{i=1}^N \frac{\exp(e_{j,i}^r)}{\sum_{i'=1}^N \exp(e_{j,i'}^r)} \cdot h_i^r,$$

where $e_{j,i}^r = a(s_{j-1}, h_i^r),$

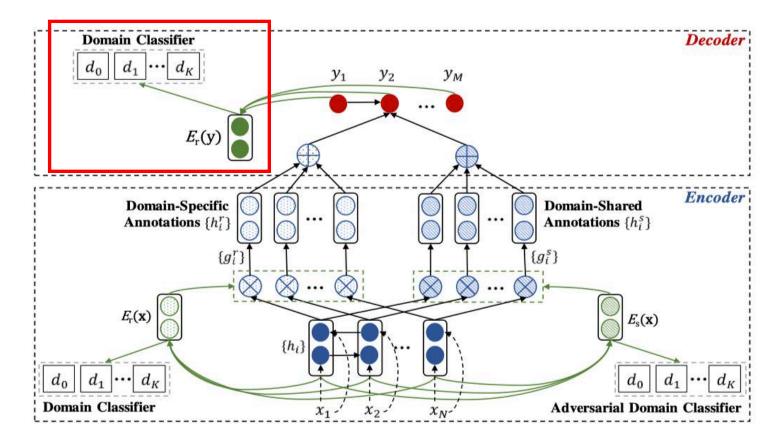


Decoder

$$E_r(\mathbf{y}) = \sum_{j=1}^M \beta_j s_j,$$
 NMT Tr
where $\beta_j = \frac{\exp(e_j)}{\sum_{j'}^M \exp(e_{j'})},$
 $e_j = (v_b)^\top \tanh(W_b s_j),$

NMT Training Objective with Word-Level Cost Weighting.

$$\mathcal{J}_{nmt}(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta_{nmt}}) = \sum_{j=1}^{M} (1 + \beta_j) \log p(y_j | \mathbf{x}, y_{< j}; \boldsymbol{\theta_{nmt}}),$$



Overall Training Objective

$$\begin{split} \mathcal{J}(\mathcal{D}; \boldsymbol{\theta}) &= \sum_{(\mathbf{x}, \mathbf{y}, d) \in \mathcal{D}} \{ \mathcal{J}_{nmt}(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta}_{nmt}) \\ &+ \mathcal{J}_{dc}^{s}(\mathbf{x}; \boldsymbol{\theta}_{dc}^{s}) + \mathcal{J}_{dc}^{t}(\mathbf{y}; \boldsymbol{\theta}_{dc}^{t}) \\ &+ \mathcal{J}_{adc}^{s1}(\mathbf{x}; \boldsymbol{\theta}_{adc}^{s1}) + \lambda \cdot \mathcal{J}_{adc}^{s2}(\mathbf{x}; \boldsymbol{\theta}_{adc}^{s2}) \} \end{split}$$

Experiment

- Chinese-English translation
 - Laws, Spoken, Thesis, News
- English-French translation
 - Medical, News, Parliamentary

Task	Domain	Train	Dev	Test
CH-EN	Laws	219K	600	456
	Spoken	219K	600	455
	Thesis	299K	800	625
	News	300K	800	650
EN-FR	Medical	1.09M	800	2000
	News	180K	800	2000
	Parliamentary	2.04M	800	2000

Experiment

- 1. DL4NMT-single
 - Attentional NMT trained on a single domain dataset.
- 2. DL4NMT-mix
 - attentional NMT trained on mix-domain training set.
- 3. DL4NMT-finetune
 - first trained using out-of-domain training corpus and then fine-tuned using in-domain dataset.

4. DC

introduces embeddings of source domain tag

5. ML1

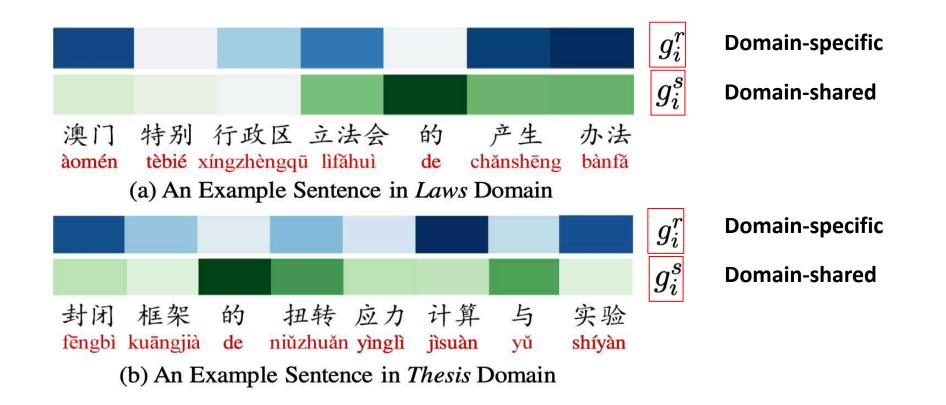
• shares encoder representation and separates the decoder modeling of different domains.

6. ML2

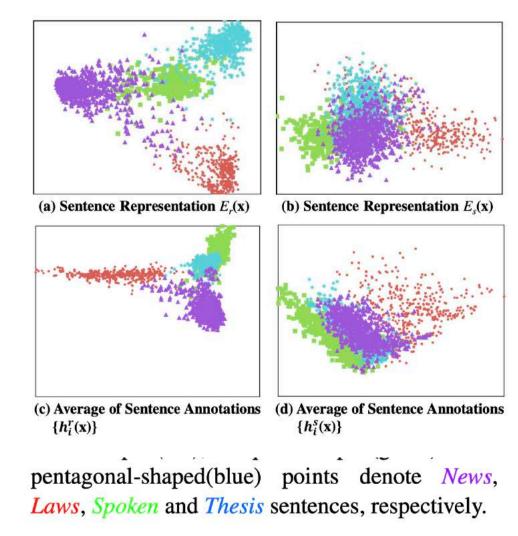
- NMT with domain classification via multitask learning.
- 7. ADM
 - adversarial training to achieve the domain adaptation in NMT.
- 8. TTM
 - adding target-side domain tag

Model	Laws	Spoken	Thesis	News			
Contrast Models (1×hd)							
OpenNMT	45.82	9.15	13.93	19.73			
DL4NMT-single	43.66	5.49	14.54	18.74			
DL4NMT-mix	46.82	8.95	15.93	20.33			
DL4NMT-finetune	54.19	8.77	16.71	21.55			
+DC	49.83	9.18	16.71	20.58			
+ML1	46.82	6.66	15.10	20.17			
+ML2	48.95	9.45	15.85	20.48			
+ADM	48.30	9.41	16.34	20.06			
+TTM	49.05	9.36	16.42	20.44			
Contrast Models (2×hd)							
DL4NMT-single	44.48	6.29	14.66	19.87			
DL4NMT-mix	48.74	9.01	16.12	20.14			
DL4NMT-finetune	54.69	9.07	17.11	21.85			
+DC	50.43	9.38	16.45	20.44			
+ML1	49.49	7.67	15.50	20.34			
+ML2	50.05	9.35	16.03	20.64			
+ADM	48.33	9.06	16.59	19.69			
+TTM	49.92	9.01	16.38	21.04			
Our Models							
+WDC(S)	54.55	10.12	17.22	22.16			
+WDC(T)	51.94	9.76	17.72	21.02			
+WDC	55.03	10.20	18.04	22.29			

Visualizations of Gating Vectors



Visualizations of Sentence Representations and Annotations



Illustrations of Domain-Specific Target Words

Domain	Top10 Target WordsArticle, Chapter, Principles, regulations, Provisions, Political, Servants, specify, China, Municipal		
Laws			
Spoken	meanly, Rusty, 1910s, scours, mountaintops, paralyze, Puff, perpetrators, hitter, weightlift- ing		
Thesis	aggregation, Activities, Computation, Alzhei mer, nn, Contemporarily, EVALUATION, ethoxycarbonyl, sCRC, Announced		
News	months, agency, outweighed, unconstitution- ally, Congolese, session, Asia, news, hurts, francs		

Table 3: Examples of Domain-Specific TargetWords.

Thanks!